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Abstract. A model including two nonlinear chains with linear and nonlinear couplings between them, and
opposite signs of the discrete diffraction inside the chains, is introduced. In the case of the cubic [χ(3)]
nonlinearity, the model finds two different interpretations in terms of optical waveguide arrays, based on the
diffraction-management concept. A continuum limit of the model is tantamount to a dual-core nonlinear
optical fiber with opposite signs of dispersions in the two cores. Simultaneously, the system is equivalent to
a formal discretization of the standard model of nonlinear optical fibers equipped with the Bragg grating.
A straightforward discrete second-harmonic-generation [χ(2)] model, with opposite signs of the diffraction
at the fundamental and second harmonics, is introduced too. Starting from the anti-continuum (AC) limit,
soliton solutions in the χ(3) model are found, both above the phonon band and inside the gap. Solitons
above the gap may be stable as long as they exist, but in the transition to the continuum limit they
inevitably disappear. On the contrary, solitons inside the gap persist all the way up to the continuum
limit. In the zero-mismatch case, they lose their stability long before reaching the continuum limit, but
finite mismatch can have a stabilizing effect on them. A special procedure is developed to find discrete
counterparts of the Bragg-grating gap solitons. It is concluded that they exist at all the values of the
coupling constant, but are stable only in the AC and continuum limits. Solitons are also found in the
χ(2) model. They start as stable solutions, but then lose their stability. Direct numerical simulations in
the cases of instability reveal a variety of scenarios, including spontaneous transformation of the solitons
into breather-like states, destruction of one of the components (in favor of the other), and symmetry-
breaking effects. Quasi-periodic, as well as more complex, time dependences of the soliton amplitudes are
also observed as a result of the instability development.

PACS. 05.45.Yv Solitons – 42.50.Md Optical transient phenomena: quantum beats, photon echo,
free-induction decay, dephasings and revivals, optical nutation, and self-induced transparency –
63.20.Ry Anharmonic lattice modes

1 Introduction

1.1 Objectives of the work

Solitary-wave excitations in discrete nonlinear dynami-
cal models (lattices) is a subject of great current inter-
est, which was strongly bolstered by experimental ob-
servation of solitons in arrays of linearly coupled optical
waveguides [1] and development of the diffraction man-
agement (DM) technique, which makes it possible to effec-
tively control the discrete diffraction in the array, includ-
ing a possibility to reverse its sign (make the diffraction
anomalous) [2,3]. It has recently been shown that a lattice
subject to periodically modulated DM can also support
stable solitons, both single-component ones [4,5] and two-
component solitons with nonlinear coupling between the
components via the cross-phase-modulation (XPM) [6].

a e-mail: malomed@eng.tau.ac.il

Two-component nonlinear-wave systems, both contin-
uum and discrete, which feature a linear coupling between
the components, constitute a class of media which can sup-
port gap solitons (GSs). A commonly known example of
a continuum medium that gives rise to GSs is a nonlinear
optical fiber carrying a Bragg grating [7,8], whose stan-
dard model is based on the equations

iΨt + iΨx +
(|Ψ |2 + 2|Φ|2)Ψ + Φ = 0,

iΦt − iΦx +
(|Φ|2 + 2|Ψ |2)Φ+ Ψ = 0, (1)

where Ψ(x, t) and Φ(x, t) are amplitudes of the right- and
left-propagating waves, and the Bragg-reflection coeffi-
cient is normalized to be 1. Another optical system that
may give rise to GSs is a dual-core optical fiber with asym-
metric cores, in which the dispersion coefficients have op-
posite signs [9].
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In this work, we demonstrate that the use of the DM
technique provides for an opportunity to build a dou-
ble lattice in which two discrete subsystems with oppo-
site signs of the effective diffraction are linearly coupled,
thus opening a way to theoretical and experimental study
of discrete GSs, as well as of solitons of different types
(solitons in linearly coupled lattices with identical discrete
diffraction in the two subsystems have recently been con-
sidered in Ref. [10]; a possibility of the existence of discrete
GSs in a model of a nonlinear-waveguide array consisting
of alternating cores with two different values of the prop-
agation constant was also considered recently [11]). The
objective of the work is to introduce this class of systems
and find fundamental solitons in them, including the in-
vestigation of their stability. We will also consider, in a
more concise form, another physically relevant possibility,
viz., a discrete system with a second-harmonic-generating
(SHG) nonlinearity, in which the diffraction has opposite
signs at the fundamental and second harmonics. Solitons
will be found and investigated in the latter system too.

It is relevant to start with equations on which our χ(3)

model (the one with the cubic nonlinearity) is based,

i
dψn

dt
= − (C∆2 + q)ψn

−
(
|ψn|2 + β |φn|2

)
ψn − κφn = 0, (2)

i
dφn

dt
= δ (C∆2 + q)φn

−
(
|φn|2 + β |ψn|2

)
φn − κψn = 0, (3)

where ψn(t) and φn(t) are complex dynamical variables
in the two arrays (sublattices), κ and β being coeffi-
cients of the linear and XPM coupling between them,
and t is actually not time, but the propagation distance
along waveguides, in the case of the most physically rele-
vant optical interpretation of the model. The operators
C∆2ψn ≡ C (ψn+1 + ψn−1 − 2ψn) and (−δ)C∆2φn ≡
(−δ)C (φn+1 + φn−1 − 2φn) represent discrete diffraction
induced by the linear coupling between waveguides inside
each array, the diffraction being normal in the first sublat-
tice and anomalous in the second, with a negative relative
diffraction coefficient −δ and intersite coupling constant C
(one may always set C > 0, which we assume below).
Physical reasons for having −δ < 0 are explained below.
Finally, the real coefficient q accounts for a wavenumber
mismatch between the sublattices.

We also choose a similar SHG model, following the
well-known pattern of discrete SHG systems with normal
diffraction at both harmonics [12,13]:

i
dψn

dt
= −C∆2ψn − ψ�

nφn, (4)

2i
dφn

dt
= δC∆2φn − ψ2

n − κφn, (5)

where the asterisk stands for the complex conjugation
and κ is a real mismatch parameter. In this case too, we
assume −δ < 0.

Fig. 1. Two parallel asymmetric arrays of optical waveguides
that are described by equations (2, 3), provided that parallel
beams propagate obliquely across both arrays. Arrows indicate
misaligned directions at which light is coupled into the arrays;
inside them, both propagation directions are identical.

There are at least two different physical realizations of
the χ(3) model based on equations (2, 3). First, one may
consider two parallel arrays of nonlinear waveguides with
different effective values n(1) and n(2) of the refractive in-
dex in them corresponding to a given (oblique) direction
of the light propagation. To this end, the waveguides be-
longing to the two arrays may be fabricated from differ-
ent materials; alternatively, they may simply differ by the
transverse size of waveguiding cores, or by the refractive
index of the filling between the cores, see, e.g., Figure 1.
The difference in the effective refractive index gives rise
to the mismatch parameter q in equations (2, 3). More
importantly, it may also give rise to different coefficients
of the discrete diffraction. Indeed, the DM technique as-
sumes launching light into the array obliquely, the effective
diffraction coefficient in each array being [2]

D(1,2) = 2Cd2 cos
(
k

(1,2)
⊥ d

)
, (6)

where d is the spacing of both arrays, and k(1,2)
⊥ are trans-

verse components of the two optical wave vectors. As it
follows from equation (6), the diffraction coefficients are
different if k(1)

⊥ �= k
(2)
⊥ .

Despite the fact that k(1)
⊥ and k

(2)
⊥ are assumed dif-

ferent, we assume that the propagation directions of the
light beams are parallel in the two arrays, as a conspicu-
ous walkoff (misalignment) between them will easily de-
stroy any coherent pattern. On the other hand, the light
coupled into both arrays has the same frequency, hence
the absolute values of the two wave vectors are related as
follows: k(1)/k(2) = n(1)/n(2), where n(1,2) are the above-
mentioned effective refractive indices. Combining the lat-
ter relation and the classical refraction law, and taking
into regard the condition that the propagation directions
are parallel inside the arrays, one readily arrives at the
conclusion that

k
(1)
⊥ /k

(2)
⊥ = n(1)/n(2). (7)

Note that the two incidence angles θ(1,2) (at the interface
between the arrays and air) are related in a similar way,
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(sin θ(1))/(sin θ(2)) = n(1)/n(2), hence the incident beams
(in air) must be misaligned, in order to be aligned in the
arrays.

Equation (6) shows that there is a critical direction of
the beam in each array, corresponding to k

(1,2)
⊥ d = π/2,

at which the effective diffraction coefficient changes its
sign [2]. Due to the difference between k

(1)
⊥ and k

(2)
⊥ , the

critical directions are different in the two arrays. Then, if
the common propagation direction in the arrays is chosen
to be between the two critical directions, equation (6) gives
different signs of the two diffractive coefficients. Note that
this interpretation of the model implies no XPM coupling
between the arrays, i.e., β = 0 in equations (2, 3).

An alternative realization is possible in a single array of
bimodal optical fibers, into which two parallel beams with
orthogonal polarizations, u and v, are launched obliquely.
If the two polarizations are circular ones, then β = 2 in
equations (2, 3), and the asymmetry between the beams,
which makes it possible to have different signs of the co-
efficient (6) for them, may be induced by birefringence,
which, in turn, can be easily generated by twist applied
to the fibers [14]. The birefringence also gives rise to the
mismatch q. As for the linear mixing between the two po-
larizations, which is assumed in the model, it can be easily
induced if the fibers are, additionally, slightly deformed,
having an elliptic cross-section [14]. If the two polariza-
tions are linear, then the birefringence is induced by the
elliptic deformation, and the linear mixing is induced by
the twist, the XPM coefficient being 2/3 in this case (as-
suming that, as usual, the birefringence makes it possible
to neglect four-wave mixing nonlinear terms [14]).

It is interesting to note that the discrete model based
on equations (2, 3) with κ = 0 is exactly tantamount
to a formal discretization of the above-mentioned con-
tinuum model which was introduced in reference [9] to
describe a dual-core optical fiber with opposite signs of
dispersion in the cores. Another quite noteworthy feature
of the present model is that, if β = 2, it turns out to
be formally equivalent to a discretization of the standard
Bragg-grating model (1), which is produced by replac-
ing Ψx → (Ψn+1 − Ψn−1) /2 and Φx → (Φn+1 − Φn−1) /2.
Indeed, making the substitution (“staggering transforma-
tion”)

Ψn ≡ inφn, Φn ≡ inψn, (8)

one concludes that the discrete version of equations (1)
takes precisely the form of equations (2, 3) with δ = 1,
q = 2C, κ = 1, and β = 2.

1.2 The linear spectrum

Before proceeding to the presentation of numerical results
for solitons found in the system of equations (2, 3), it is
relevant to understand at which values of the propagation
constant Λ (spatial frequency) solitons with exponentially
decaying tails may exist in this model. There are two re-
gions in which they may be found. Firstly, inside the gap
of the system’s linear spectrum one may find discrete gap

solitons, i.e., counterparts of the GSs found in the con-
tinuum version of the model in reference [9]. Secondly,
solitons specific to the discrete model may be found above
the phonon band. To analyze these possibilities, an asymp-
totic expression for the tail,

ψn, φn ∼ exp (iΛt− λ |n|) (9)

is to be substituted into the linearized version of equa-
tions (2, 3).

Investigating the possibility of the existence of solitons
above the phonon gap, it is sufficient to focus on the par-
ticular case δ = 1 and q = 0, when the system’s spectrum
takes a simple form (we have also considered more general
cases with positive δ different from 1 and q �= 0, concluding
that they do not yield anything essentially different from
this case). The final result, produced by a straightforward
algebra, is that solitons are possible in the region

Λ2 > Λ2
edge ≡ 16C2 + κ2, (10)

±Λedge being edges of the phonon band. In what follows
below, we will assume Λ > 0, as in this case positive and
negative values of Λ are equivalent.

To understand the possibility of the existence of the
discrete GSs, we, first, set δ = 1 as above, but keep the
mismatch q as an arbitrary parameter. Then, the gap is
easily found to be

Λ2 < Λ2
gap ≡



q2 + κ2 if q < 0,

κ2 if 0 ≤ q ≤ 4C,

(q − 4C)2 + κ2 if q > 4C

(11)

(recall that, by definition, C > 0). An essential role of the
mismatch parameter is that it makes the gap broader if it
is negative.

In the more general case, δ �= 1, two different layers
can be identified in the gap, similar to what was found in
the continuum limit [9]. For instance, if q = 0, the inner
and outer layers are

0 < Λ2 <
4δ

(δ + 1)2
κ2, and

4δ
(δ + 1)2

κ2 < Λ2 < κ2 (12)

(in the case δ = 1, the outer layer disappears). The differ-
ence between the layers is the same as in the continuum
limit [9]: in the outer layer, solitons, if any, have mono-
tonically decaying tails, i.e., real λ in equation (9), while
in the inner layer λ is complex, and, accordingly, soliton
tails are expected to decay with oscillations.

1.3 The structure of the work

The rest of the paper is organized as follows. In Section 2,
we display results for solitons found above the phonon
band, i.e., in the region (10). The evolution of the soli-
tons is monitored, starting from the anti-continuum (AC)
limit C = 0, and gradually increasing C. Any branch
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of soliton solutions in this region must disappear, ap-
proaching the continuum limit. Indeed, as the radiation
band (frequently called “phonon band”, referring to linear
phonon modes in the lattice dynamics) becomes infinitely
broad in this limit, see equation (10), the solution branch
with Λ = const will crash hitting the swelling phonon
band. However, in many cases the soliton of this type is
found to remain stable as long as it exists, so it may be
easily observed experimentally in the optical array.

In Section 3 we present results for solitons existing in-
side the gap. In the outer layer [which is defined as per
Eq. (12), provided that δ �= 1], we were able to find only
solitons of an “antidark” type, that sat on top of a non-
vanishing background. However, in the inner layer [recall
it occupies the entire gap in the case δ = 1, according to
Eq. (12)], true solitons are easily found (in accord with the
prediction, their tails decay with oscillations). In the case
q = 0, these solutions appear as stable ones in the AC
limit, get destabilized at some finite critical value of C,
and continue, as unstable solutions, all the way up to the
continuum limit, never disappearing. It is quite interesting
that sufficiently large negative mismatch strongly extends
the stability range for these solitons.

As was mentioned above, the χ(3) model based on
equations (2, 3) may be considered as a discretization of
the standard gap-soliton system (1). In this connection, it
is natural to search for discrete counterparts of the usual
GSs in the latter system. However, the discrete GSs found
in Section 3 do not have any counterpart in the continuum
system (1), as the staggering transformation (8) makes di-
rect transition from the discrete equations (2, 3) to the
continuum system (1) impossible. At the end of Section 3,
we specially consider discrete solitons which are directly
related to GSs in the system (1). We find that such soli-
tons exist indeed at all the values of C, their drastic differ-
ence from those found in Sections 2 and 3 is that they are
essentially complex solutions to the stationary version of
equations (2, 3). At all finite values of C, they are unsta-
ble, but the instability asymptotically vanishes in the AC
and continuum limits, C → 0 and C → ∞.

In Section 4, we briefly consider the SHG model (4, 5).
Solitons are found in this model too, and their stability
is investigated. When the solitons are linearly unstable,
the development of their instability is examined (in all
Sects. 2, 3, and 4) by means of direct numerical sim-
ulations, which show that the instability may initiate a
transition to a localized breather, or to lattice turbulence,
or, sometimes, complete decay of the soliton into lattice
phonon waves.

2 Solitons above the phonon band

2.1 General considerations

Stationary solutions to equations (2, 3) are sought for the
form

ψn = eiΛtun, φn = eiΛtvn, (13)

where Λ is the propagation constant defined above. In
figures displayed below, the stationary solutions will be
characterized by the norms of their two components,

P 2
u ≡

+∞∑
n=−∞

u2
n, P 2

v ≡
+∞∑

n=−∞
v2

n . (14)

Once such solutions are numerically identified by means
of a Newton-type numerical scheme, we then proceed to
investigate their stability, assuming that the solution is
perturbed as follows:

ψn = [un + εan exp(iωt)
+εbn exp(−iω�t)] exp(iΛt), (15)

φn = [vn + εcn exp(iωt) + εdn exp(−iω�t)] exp(iΛt),
(16)

where ε is an infinitesimal amplitude of the perturba-
tion, and ω is the eigenvalue corresponding to the lin-
ear (in)stability mode. The set of the resulting linearized
equations for the perturbations {a, b�, c, d�;ω} is subse-
quently solved as an eigenvalue problem. This is done by
using standard numerical linear algebra subroutines built
into mathematical software packages [15]. If all the eigen-
values ω are purely real, the solution is marginally stable;
on the contrary, the presence of a nonzero imaginary part
of ω indicates that the soliton is unstable. When the so-
lutions were unstable, their dynamical evolution was fol-
lowed by means of fourth-order Runge-Kutta numerical
integrators, to identify the development and outcome of
the corresponding instabilities.

In what follows below, we describe different classes of
soliton solutions, which are generated, in the AC limit, by
expressions with different symmetries. Still another class
of solitons, which carries over into the usual GSs in the
continuum system (1), will be considered in the next sec-
tion.

2.2 Solution families which are symmetric
in the anti-continuum limit

As it was said above, in this section we set δ = 1 and
q = 0, since comparison with more general numerically
found results has demonstrated that this case adequately
represents the general situation, as concerns the existence
and stability of solitons. Figure 2 shows a family of soliton
solutions found for κ = 0.1, Λ = 2 and β = 0, as a function
of the coupling constant C. In this case, the family starts,
in the AC limit (C = 0), with a solution that consists of a
symmetric excitation localized at a single lattice site n0,
with

un0 = vn0 = ±
√
Λ− κ

1 + β
, (17)

and terminates at finite C. Figure 2 demonstrates that
this branch is always unstable. The termination of the
branch happens when it comes close to the phonon band,
that swells with the increase of C. The branch terminates
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Fig. 2. The top panel shows the norms Pu (lower curve) and Pv

(upper curve) of the two components of the soliton solution
vs. C, up to the point where the branch terminates. The next
set of panels shows two examples of the solution at C = 0.1
(the upper row) and C = 0.464 (just near the termination
point of the branch; the lower row), together with the spectral
planes of the corresponding linear stability eigenvalues (the
vertical and horizontal coordinates in the plane correspond to
the imaginary and real parts of ω). The profiles of the un and vn

components are shown, respectively, by circles and stars. These
solutions are always unstable. The bottom panel shows the
imaginary part of the single unstable eigenfrequency vs. C.

at C = 0.464, when the upper edge of the band is at
Λedge =

√
κ2 + 16C2 ≈ 1.859, according to equation (10).

This value is still smaller than the fixed value of the soli-
ton’s propagation constant, Λ = 2, for which the soliton
branch is displayed in Figure 2. The branch, if it could be
continued, would crash into the upper edge of the phonon
band at C = 0.499. The slightly premature termination
of this soliton family is a consequence of the nonlinear
character of the solutions, as the above prediction for the
termination point was based on the linear approximation.

Fig. 3. Evolution of the unstable soliton from Figure 2 in the
case C = 0.1, β = 0, and κ = 0.1. The top panel shows
the fields’ spatial profiles (the circles correspond to |ψn|2, and
the stars to |φn|2) for t = 4 (left panel), t = 192 (middle panel)
and t = 196 (right panel). The first profile is nearly identical to
the initial condition, while the other two were chosen close to
points where the oscillating amplitude of the resultant breather
attains its maximum and minimum. The bottom panel shows
the field evolution at the central lattice site (n = 50), clearly
demonstrating the breathing nature of the established state.
The solid and dashed lines are, respectively, |ψ50|2 and |φ50|2.
In this case, the instability growth rate of the initial soliton is
≈0.8; in view of this large value, it was not necessary to add
any initial perturbation to trigger the instability.

An example of the development of the instability of
this solution, as found from direct simulations of the full
equations (2, 3), is given in Figure 3 for C = 0.1. It is
clearly seen that the unstable soliton turns into a stable
breather.

On the contrary, in the presence of XPM with the
physically relevant value of β = 2, a similar solution
branch, found for the same values κ = 0.1 and Λ = 2,
is stable for all C, until it terminates at C = 0.499. Note
that, at this point, the upper edge (10) of the phonon band
is Λedge = 1.999, which is extremely close to Λ = 2, i.e.,
the termination of the solution family is indeed accounted
for by its crash into the swelling phonon band. Details of
this stable branch are shown in Figure 4.

Direct simulations of this solution have corroborated
its stability (details are not shown here). In fact, in all
the cases when solitons are found to be stable in terms
of the linearization eigenvalues (see other cases below),
direct simulations fully confirm their dynamical stability.

2.3 Solution families which are anti-symmetric
in the anti-continuum limit

Another branch of solutions is initiated, in the AC limit,
by an anti-symmetric excitation localized at a single
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Fig. 4. The same as in Figure 2, but for the case β = 2. The
middle and lower panels display examples of the soliton solu-
tions at C = 0.1 and C = 0.499, respectively. In the top panel,
the upper and lower curves now correspond to the vn and un

components, i.e., opposite to the case shown in Figure 1. Notice
that this branch is always stable until it terminates, therefore
the figure does not contain a counterpart of the dependence
shown in the bottom panel of Figure 2.

lattice site, cf. equation (17):

un0 = −vn0 = ±
√
Λ+ κ

1 + β
· (18)

The solution belonging to this branch is shown in Fig-
ure 5 for the same values of parameters as in Figure 2,
i.e., δ = 1, κ = 0.1, Λ = 2, and β = 0. With the in-
crease of C, this branch picks up an oscillatory instability
at C ≈ 0.257, and terminates at C ≈ 0.407. Unlike the
solutions displayed above, the termination of this branch
occurs not through its crash into the phonon band, but via
a saddle-node bifurcation. The latter bifurcation implies a
collision with another branch of solutions. That additional
branch (which is strongly unstable) was found but is not
shown here.

In fact, the numerical algorithm is able to capture
other solutions (unstable ones) past the point C ≈ 0.407
at which the present solution terminates. The newly found
solutions are shown in the bottom part of Figure 5.
However, the new family cannot be continued beyond
C = 0.467 [cf. the termination point C = 0.464 for the
solutions initiated in the AC limit by the expression (17)].

The development of the oscillatory instability of the
solution shown in Figure 5 was also studied in direct simu-
lations. It leads to onset of a state where one component of
the soliton is fully destroyed [it cannot completely disap-
pear, due to the presence of the linear couplings in Eqs. (2,
3), but it is reduced to a level of small-amplitude radia-
tion]. An example of this is given in Figure 6 for C = 0.3,
β = 0 and κ = 0.1. The instability (with the initial growth
rate 0.07 in this case) develops after t ≈ 60, destroying one
component of the soliton in favor of further growth of the
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Fig. 5. The top panel shows the branch of solutions starting
from the expression (18) in the AC limit. Two particular exam-
ples are shown for C = 0.1 (a stable solution, the upper row)
and C = 0.257 (at the onset of the oscillatory instability, the
lower row). The circles and stars again denote the un and vn

components, respectively. The panel beneath this displays the
instability growth rate, Imω, vs. C. Finally, the bottom panels
show the profiles and linear stability eigenvalues for another
solution, found beyond the termination point of this branch at
C = 0.407. Two examples of the new solution are given for
C = 0.407 (the upper row) and C = 0.467 (the lower row).
These two points are very close to the beginning and termina-
tion of the new branch.
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Fig. 6. Dynamical development of the oscillatory instability
of the anti-symmetric solution for C = 0.3, β = 0 and κ = 0.1.
The meaning of the symbols is as in Figure 3. The top left
and right panels show the field configuration at t = 4 and
t = 196, respectively. The bottom panel once again shows the
field evolution at the central site.

other one. In this case, a uniformly distributed noise per-
turbation of an amplitude 10−4 was added to accelerate
the onset of the instability, as the initial instability is very
weak (which implies that the unstable soliton may be ob-
served in experiment).

A counterpart of the solution from Figure 5, but with
β = 2, rather than β = 0, is shown in Figure 7. This
branch is always unstable (i.e., in the case of the solu-
tions starting from the anti-symmetric expression in the
AC limit, the XPM nonlinearity destabilizes the solitons,
while in the case of the branch that was initiated by the
symmetric expression in the AC limit, the same XPM
nonlinearity was stabilizing). It terminates at C ≈ 0.219,
again through a saddle-node bifurcation. As in the previ-
ous case, a new family of solutions can be captured by the
numerical algorithm past the termination point. The new
family is found for 0.22 < C < 0.498, and it is also shown
in Figure 7. Comparing the value Λedge = 1.995 given by
equation (10) in this case with the actual value Λ = 2 of
the soliton’s propagation constant, we conclude that the
termination of the latter branch is caused by its collision
with the phonon band. Notice also that the latter branch
becomes unstable only very close to its termination point,
at C > 0.494.

In the case of β = 2, direct simulations show that
the instability of the anti-symmetric branch gives rise to
rearrangement of the solution into a very regular breather
shown in Figure 8 for C = 0.1 and κ = 0.1.

2.4 Solution families which are asymmetric
in the anti-continuum limit

Additional branches of the solutions may start in the AC
limit from asymmetric configurations, provided that Λ is
still larger, namely for Λ > 2κ. In particular, such an
extra branch can be initiated by the following AC-limit

0 0.1 0.2

0.4

0.6

0.8

1

1.2

P

C

40 45 50 55 60
−1

0

1

u n , 
v n

n −2 0 2
−0.5

0

0.5

ω
i

ω
r

45 50 55

−1

−0.5

0

n
−2 0 2

−0.5

0

0.5

ω
i

ω
r

u n , 
v n

0 0.1 0.2
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

ω
i

C

40 45 50 55 60

0

0.5

1

1.5

u n , 
v n

n
−2 0 2

−3

−2

−1

0

1

2

3

ω
i

ω
r

40 45 50 55 60

0

0.5

1

1.5

u n , 
v n

n
−5 0 5

0ω
i

ω
r

Fig. 7. The same as in Figure 5, but for β = 2. This branch is
always unstable (as is shown by the middle plot demonstrating
the instability growth rate vs. C) in its range of existence,
0 < C < 0.219. Examples of the solution displayed in the
upper part of the figure are given for C = 0.1 and C = 0.219.
The lower part shows the new solution family found past the
termination point of the unstable branch. Example of the new
solutions are given for C = 0.22 (stable, the upper row) and
C = 0.498 (just prior to the termination of the new family, the
lower row). The instability of this branch sets in at C ≈ 0.494,
i.e., very close to the termination point.
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Fig. 8. The development of the instability accounted for by
the imaginary eigenfrequency (with the growth rate ≈ 0.45) of
the anti-symmetric branch, in the case of C = 0.1, κ = 0.1.
The top panels pertain to t = 4 (left), t = 100 (middle) and
t = 120 (right). The latter two have again been chosen close
to the points where the oscillating amplitude of the resultant
breather attains its maximum and minimum, respectively. The
instability sets in around t ≈ 40; no external perturbation was
added to the initial condition in this case.

solution excited at a single site n = n0 (here, β = 0), cf.
equations (17, 18):

u2
n0

=
1
2

[
Λ ±

√
Λ2 − 4κ2

]
, (19)

vn0 = κ−1(Λun0 − u3
n0

) . (20)

An example of this solution for the upper sign in equa-
tion (19) is shown, for Λ = 2, κ = 0.5 and δ = 1, in
Figure 9. Such asymmetric branches may be stable for
sufficiently weak coupling (in this case, for C < 0.204),
but they eventually become unstable, and disappear soon
thereafter (at C ≈ 0.213, in this case).

The evolution of the instability (for C > 0.204) for this
asymmetric branch is strongly reminiscent of that shown
in Figure 3, resulting in a persistent breathing state.

The branch that commences from the AC expres-
sion (19) with the lower sign is shown for Λ = 2, κ = 0.75
and δ = 1 in Figure 10. The branch remains stable as long
as it exists, i.e., for C < 0.46. At this point, it disappears
colliding with the phonon band, whose upper edge is lo-
cated, according to equation (10), at Λedge ≈ 1.987, which
is very close to the family’s fixed propagation constant,
Λ = 2.

3 Gap solitons

3.1 Solitons in the inner layer of the gap

All the solutions that were examined in the previous sec-
tion had their propagation constant above the upper edge
of the phonon spectrum. Another issue of obvious interest
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Fig. 9. The solution branch generated, in the AC limit, by
the asymmetric expressions (19, 20) with the upper sign. The
notation is the same as in Figure 2. Two examples of the solu-
tion are shown for C = 0.1 and C = 0.213. The most unstable
eigenvalue is shown, vs. C, in the bottom panel. The instability
sets in at C ≈ 0.204, and the branch terminates at C ≈ 0.213.

is to study possible gap solitons (GSs), whose propagation
constant is located inside the gap (11), i.e., below the lower
edge of the phonon band. Unlike the solitons found above
the band, GSs may persist up to the continuum limit.

An example of such a solution for Λ = 0.75, κ = −1,
δ = 0.9, and β = 0 is shown in Figure 11. In the AC limit,
this branch starts with the expression (17). The branch
is stable for small C, but then it becomes unstable due
to oscillatory instabilities. The first two instabilities occur
at C = 0.242 and C = 0.349, as is shown in Figure 11.
Past the onset of the instabilities, this branch continues
to exist (as an unstable one) indefinitely with the increase
of C, and carries over into an (unstable) GS in the con-
tinuum limit. At large values of C, the distinct phonon
bands, which are clearly seen in the example of the eigen-
value spectrum shown for C = 0.4 in Figure 11, eventually
collide, and their opposite Krein signs (see the definition
and discussion of these in Ref. [16]), give rise to a whole
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Fig. 10. The same as in Figure 9, but generated by the ex-
pression (19) with the lower sign. This solution is always stable
until it terminates at C ≈ 0.458. Examples of the solution for
C = 0.2 and C = 0.458 (the latter case is chosen just prior to
the termination of the branch) are shown, as usual, by means
of their profiles and linear stability eigenfrequencies.

set of oscillatory instabilities. The result is clearly seen in
the example of the eigenvalue spectrum shown in the bot-
tom panel of Figure 11 for a large value of the coupling
constant, C = 4. The characteristic size of the instability
growth rate (largest imaginary part of the eigenvalue) is
nearly the same for C = 0.4 and C = 4, in the latter case
it being ≈ 0.09. Notice, however, that, as the continuum
limit is approached, the instabilities may be suppressed, in
a part or completely, by finite-size effects (for an example
of such finite-size restabilization, see Ref. [17]).

The development of the oscillatory instability of GS
belonging to the inner layer is displayed, for C > 0.242,
in Figure 12 for C = 0.4, δ = 0.9, κ = −1 and β = 0. In
this particular case, there are two oscillatory instabilities
whose growth rates are in the interval 0.1 < ωi < 0.2. As
a result, symmetry breaking occurs, resulting in a shift of
the central position of the soliton (from the site n = 50
to n = 49). Oscillatory features in the dynamics are also
observed in the latter case, and a small amount of energy
is emitted as radiation.

Similar results were obtained for smaller values of Λ,
for instance, Λ = 0.25. It was verified too that this sce-
nario persists in the presence of the XPM nonlinearity
(i.e., for β = 2), as it is shown in Figure 13. In the latter
case, the evolution of the instability with the increase of C
is quite interesting, as it is nonmonotonic. The instability
first arises at C ≈ 0.11 (due to a collision between discrete
eigenvalues with opposite Krein signs). Subsequent resta-
bilization takes place at C ≈ 0.16, but the solutions are
unstable again for C > 0.36, and remain unstable there-
after, up to the continuum limit.

In the case of β = 2, the dynamical development of the
oscillatory instabilities is similar to the β = 0 case, again
demonstrating symmetry-breaking effects.
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Fig. 11. The branch of the gap-soliton solutions with Λ = 0.75,
κ = −1, δ = 0.9, and β = 0. The upper part of the figure
shows the norms of the two components of the soliton, and
examples of the solutions for C = 0.1 (stable) and C = 0.4
(after the onset of the first oscillatory instability). The middle
panel shows the instability growth rates, while the lower part
of the figure gives an example of a solution belonging to this
branch, found at a much larger value of the coupling constant,
C = 4. This solution family extends, as an unstable one, up to
the continuum limit.
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Fig. 12. The evolution of the unstable gap soliton belong-
ing to the inner layer, for C = 0.4, δ = 0.9, κ = −1, and
β = 0. The top panels shows the wave field distribution at
t = 4 (left), t = 124 (middle) and t = 132 (right). Symmetry-
breaking effects are clearly visible. A random perturbation of
an amplitude 10−4 was added to the initial condition in order
to catalyze the onset of the instability, which occurs at t > 40.

3.2 Solutions in the outer layer of the gap

In all the cases considered in the previous subsections,
the soliton’s propagation constant Λ belonged to the inner
layer of the gap, see equation (12). We have also examined
the situation when Λ belongs to the outer layer defined in
equation (12) (the outer layer exists unless δ = 1). An
example is shown in Figure 14, where β = 0, κ = −1,
δ = 0.1, and Λ ≈ 0.787 is chosen to be in the middle
of the outer layer. In this case, we typically obtained de-
localized solitons, sitting on top of a finite background
(they are sometimes called “antidark” solitons). As can
be observed from Figure 14, such solutions may be stable
for sufficiently weak coupling, but become unstable as the
continuum limit is approached, although they do not dis-
appear in this limit (in Ref. [9] such delocalized solitons
were found in the continuum counterpart of the present
model).

The instability development in the case of the outer-
layer GSs is demonstrated, for C = 0.549, β = 0, κ = −1
and δ = 0.1, in Figure 15. In this case, the non-vanishing
background is also perturbed by the instability, resulting
in, plausibly, chaotic oscillations throughout the lattice.
Symmetry-breaking effects, which shift the central peak
from its original position, are observed too in this case.

3.3 Stabilization of the gap solitons by mismatch

The above considerations show that, inside the inner layer
of the gap, it is easy to identify families of soliton solu-
tions that persist in the continuum limit as C → ∞. How-
ever, all the examples considered above showed that the
solutions get destabilized at finite C and remain unstable
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Fig. 13. The same as the previous figure, but for β = 2. Exam-
ples of the solutions are shown for C = 0.2 (upper row, stable)
and C = 1.6 (lower row, unstable due to several oscillatory in-
stabilities). The bottom panel demonstrates the nonmonotonic
evolution of the instability of this solution with the increase
of C.
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Fig. 14. Solutions with non-decaying oscillatory background
for propagation constants belonging to the outer layer defined
by equation (12). The top panel shows a stable solution for
C = 0.158, and the bottom panel shows an unstable one of
C = 0.576. These solutions are unstable for all C > 0.341.



P.G. Kevrekidis et al.: Discrete gap solitons in a diffraction-managed waveguide array 431

0 20 40 60 80 100 120 140 160 180 200
0

0.5

1

1.5

2

2.5

3

3.5

|ψ
50

|2  , 
|φ

50
|2

t

30 40 50 60 70
0

0.5

1

1.5

2

2.5

3

|ψ
n|2  , 

|φ
n|2

n
0 20 40 60 80 100

0

0.2

0.4

0.6

0.8

1

|ψ
n|2  , 

|φ
n|2

n

Fig. 15. The time evolution of the outer-layer gap solitons for
C = 0.549, β = 0, κ = −1 and δ = 0.1. The initial condition is
perturbed by a random uniformly distributed perturbation of
an amplitude 10−4. The result of the instability is the excita-
tion of background oscillations, as well as a shift of the soliton’s
peak from its original position. The top left and right spatial
profiles correspond to t = 4 and t = 200, respectively.

with the subsequent increase of C. Therefore, a challeng-
ing problem is to find solution families that would remain
stable for large values of C.

In fact, the introduction of a finite mismatch q (recall
it was set equal to zero in all the examples considered
above) may easily stabilize the discrete GSs. To this end,
we pick up a typical example, with C = 0.5, κ = −1,
δ = 0.5, Λ = 0.75, and β = 0, when the GS exists but is
definitely unstable in the absence of the mismatch. Fig-
ures 16 and 18 show the effect of positive and negative
values of the mismatch on the solitons. As is seen, large
values of the positive mismatch can make the instability
very weak, but cannot completely eliminate it. However,
sufficiently large negative mismatch readily makes the soli-
tons truly stable. Thus, adding the negative mismatch is
the simplest way to stabilize the solitons at large C, which
is not surprising, as equation (11) demonstrates that the
negative mismatch makes the gap broader.

As an example of the dynamical evolution of unstable
solitons in the case of positive mismatch, in Figure 17 we
display the case of C = 0.5, κ = −1, β = 0, δ = 0.5 and
q = 1. In this case, the evolution leads to the establishment
of a breather with a rather complex dynamical behavior.

The instability development in the case of negative
mismatch, q = −2.5, is demonstrated in Figure 19. A lo-
calized breather with quasi-periodic intrinsic dynamics is
observed in this case as an eventual state.

3.4 Discrete counterparts of gap solitons
from the Bragg-grating model

As was shown in the introduction, the particular case of
equations (2, 3) with κ = 1, δ = 1, and β = 2 may be
interpreted, with regard to the transformation (8), as a
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Fig. 16. A family of the gap-soliton solutions obtained for
fixed values C = 0.5, κ = −1, δ = 0.5, Λ = 0.75, and β = 0, by
continuation to positive values of the mismatch parameter q.
The top panel and the one beneath it show the evolution of the
norms of the two components of the solution, and of the largest
instability growth rate, with the increase of q. Other panels
show examples of the solution (as usual, in terms of profiles of
the two components and linear stability eigenvalues) for q = 0,
q = 2, and q = 5, from top to bottom.

discretization of the standard Bragg-grating system (1).
This continuum model gives rise to a family of exact GS
solutions [7],

Ψ = U(x) exp (−it cos θ) ,
Φ = V (x) exp (−it cos θ) , (21)

U(x) =
sin θ√

3
sech

(
x sin θ − i

2
θ

)
,

V = −U∗, (22)

where the real parameter θ takes values 0 < θ < π. A
part of this interval, 0 < θ < θcr ≈ 1.01 (π/2), is filled
with stable solitons [18], while the remaining part contains
unstable ones.

All the discrete GSs considered above are not coun-
terparts of the continuum solitons given by equa-
tions (21, 22). Establishing a direct correspondence
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Fig. 17. The dynamical evolution in the unstable case with
C = 0.5, κ = −1, β = 0, δ = 0.5 and q = 1 (positive mismatch).
The top left and right panels correspond to t = 4 and t = 396,
respectively. A complex pattern of the amplitude evolution is
observed in this case. The initial condition contains a random
perturbation with an amplitude 5 × 10−5.
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Fig. 18. The same as in Figure 16, but for negative values of
the mismatch. Examples of the solutions are given for q = 0,
q = −2, and q = −5, from top to bottom.
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Fig. 19. The evolution of the unstable discrete gap soliton
in with C = 0.5, κ = −1, β = 0, δ = 0.5 and q = −2.5
(negative mismatch). The top left and right panels show the
field profiles for t = 4 and t = 196, respectively. The time
evolution of the amplitudes is shown in the bottom panel. A
random perturbation of an amplitude 10−4 was used in this
case.

between the latter ones and discrete solitons of equa-
tions (2, 3) is complicated by two problems: the trans-
formation (8) does not have a continuum limit, and real
symmetric or anti-symmetric GSs with |Λ| < κ do not ex-
ist in the AC limit, as is seen from equations (17, 18), i.e.,
the usual starting point of the analysis is not available in
this case.

We have considered discrete analogs of the Bragg-
grating GSs in the following way. First, we took a formal
discrete counterpart of the waveforms (21) and (22), and
used them as an initial guess, to generate numerically ex-
act solutions of a direct discrete version of equations (1).
Then the transformation (8) was applied to these solu-
tions, and the result was used as an initial guess to find a
numerically exact stationary solution of equations (2, 3)
[as the discrete version of Eqs. (1), subject to the trans-
formation (8), is tantamount to Eqs. (2, 3), the last step
was engaged only to check the consistency of the numeri-
cal scheme; the two solution are indeed completely identi-
cal, see an example in Fig. 20]. This procedure naturally
generates new discrete gap solitons, a crucial difference of
which from all the types considered above is that they are
truly complex solutions, see examples in Figures 20 and 21
[to produce these examples, we started with θ = π/4 in
Eq. (22)].

Then, the solution was numerically continued, decreas-
ing C, back to the AC limit, in order to identify its AC
“stem”. The result is shown in Figure 21. Obviously, this
AC state is very different from all those considered above
(in particular, it is complex).

Finally, linear-stability eigenvalues were calculated for
this new branch of the discrete GSs. The result (see
Fig. 22) is that this branch is unstable for all finite values
of C, getting asymptotically stable in both limits C → 0
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Fig. 20. Absolute values of the fields in a new complex discrete
gap-soliton solution, which was obtained, at C = 1.24, from the
discretization of the Bragg-grating model (1) [the initial guess
used a formal discrete counterpart of the expressions (22) with
θ = π/4]. Then, the transformation (8) was applied to this
solution, and (in order to check the consistency of the numer-
ical scheme) it was used as an initial condition of the Newton
method to find a solution to equations (2, 3). The continuous
and dashed lines (which completely overlap) show the resulting
profiles generated by the procedure: one corresponds to the so-
lution for the discrete version of the Bragg-grating model, and
one to the direct solution of equations (2, 3).

and C → ∞ [large values of C are not shown in Fig. 22];
the stability regained in the latter limit complies with the
above-mentioned fact that a subfamily of the continuum
Bragg-grating gap solitons are dynamically stable. Notice
that the natural norm of the continuum soliton differs
from that of the discrete one, given by equation (14), by an
additional multiplier C−1/2 (which is proportional to the
effective lattice spacing). We have checked that the thus
renormalized norm of the soliton converges as C → ∞,
although data for large C is not displayed in Figure 22.

4 Solitons in the model with the quadratic
nonlinearity

Stationary solutions of the SHG system (4) and (5) are
looked for in an obvious form, cf. equations (13):

ψn = eiΛtun, φn = e2iΛtvn, (23)

and in this case we only consider the (most characteristic)
case δ = 1. The linearization of equations (4, 5) demon-
strates that one may expect termination of a soliton-
solution branch, due to its collision with the phonon band,
at (or close to) the point

Λ = κ/4 + C, (24)

and the gap between two phonon bands is

0 < Λ < κ/4 (25)

(it exists only if κ > 0).
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Fig. 21. Left panels show profiles of real and imaginary parts
of the fields ψn and φn in the discrete counterpart of the Bragg-
grating gap soliton from Figure 20. Right panels show stability
eigenvalues for the same soliton. The upper and lower parts of
the figure pertain to the soliton at C = 1.24 (the same value
as in Fig. 20), and to its continuation to the anti-continuum
limit, C = 0. In the left panels, circles (joined by solid lines)
refer to the real parts, and stars (connected by dashed lines)
correspond to the imaginary parts of the corresponding fields.
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Fig. 22. The norm of the solution to equations (2, 3) which is
the discrete counterpart of the Bragg-grating gap soliton (up-
per panel), and its two unstable eigenvalues (solid and dashed
lines in the lower panel), vs. the coupling constant. Continua-
tion of the figure to larger values of C shows that the soliton
becomes asymptotically stable as C → ∞.

Stationary solutions were constructed, again, by means
of continuation starting from the AC limit, where the ex-
citation localized on a single site of the lattice assumes the
form

vn0 = Λ, (26)

un0 = ±
√
vn0(4Λ− κ). (27)

Note that solutions with the propagation constant belong-
ing to the gap (25) do not exist close to the AC limit.
Indeed, the AC expression (27) shows that a necessary
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Fig. 23. The family of the discrete SHG solitons found for
κ = 0.9, δ = 1, and Λ = 0.25. The top panel shows the evo-
lution of the norms of the fundamental- (circles) and second-
frequency (stars) components of the soliton, which are defined
the same way as in equation (14), with the increase of C. Ex-
amples of solutions are displayed for C = 0.01, below the in-
stability threshold, which is Ccr = 0.015 (the upper row), and
for C = 0.024, just prior to the termination of the branch at
C = 0.025 (the lower row). The bottom panel shows the evolu-
tion of the instability growth rate (imaginary part of the most
unstable eigenvalue).

condition for its existence is 4Λ > κ. On the other hand,
Λ stays in the gap (25) if 4Λ < κ, so the two conditions
are incompatible.

A typical example of a numerically found soliton
branch is shown, for the value of the mismatch param-
eter κ = 0.9, in Figure 23. This solution family is fixed
by choosing Λ = 0.25, and starting from the expres-
sions (26, 27) with the upper sign. It is seen that the
branch is stable for C < 0.015, but then it becomes unsta-
ble, and eventually terminates at C ≈ 0.025, in very good
agreement with the prediction of equation (24).

Development of the instability of this SHG soliton
branch for C > 0.015 was numerically examined through
direct simulations, results of which are presented in Fig-
ure 24, for the case of C = 0.02, the corresponding in-
stability growth rate being ≈ 0.03. A random uniformly
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Fig. 24. Simulations of the instability development for the dis-
crete SHG soliton in the case with C = 0.02, κ = 0.9 and δ = 1.
The circles in the spatial profiles of the top panels denote the
fundamental, and the stars denote the second harmonic. The
left panel corresponds to t = 4, the middle to t = 660 (close
to the point where the oscillating amplitude attains its max-
imum), and the right to 760 (close to a minimum-amplitude
point). The bottom panel shows the oscillatory behavior at
the central site for the fundamental (solid line) and second
harmonics (dashed line).
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Fig. 25. The same as in the upper part of Figure 24, but for
κ = −0.1. The middle panel shows an example of the solu-
tion for C = 0.1, and the bottom panel shows an example for
C = 0.274, just prior to the termination of the branch (which
happens at C = 0.275).

distributed perturbation of an amplitude 10−4 was added
to the initial condition to accelerate the onset of the in-
stability. The eventual result of the instability is the ap-
pearance of a breather with very regular periodic intrinsic
vibrations.

A similar result for the case without a gap in the
phonon spectrum [see Eq. (25)] is shown in Figure 25
for κ = −0.1, the other parameters being the same as
in the previous case. This time, the branch terminates at
C ≈ 0.275, once again in complete agreement with the
prediction of equation (24).
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Fig. 26. The same as in Figure 23, but for the lower sign in
equation (27). The middle panel of the top subplot displays an
example of a stable solution for C = 0.01, while the bottom
panel shows a solution for C = 0.061, close to the termination
of the branch. In this case, κ = 0.75, δ = 1, and Λ = 0.25.

Lastly, another characteristic branch of solutions can
be constructed starting from the pattern given by equa-
tions (27) with the lower sign. This solution family is dis-
played in Figure 26, for κ = 0.75, δ = 1, and Λ = 0.25. The
branch is stable for sufficiently weak coupling, but then it
becomes unstable for C > 0.046. The branch disappears
colliding with the phonon band at C ≈ 0.062, once again
in full agreement with the prediction of equation (24).

An example of the development of instability of the
present solution, that takes place at C > 0.046, is shown
in Figure 27 for C = 0.055 (κ = 0.75; δ = 1). A random
initial perturbation with an amplitude 10−4 was added to
the initial condition in this case. As is seen, the evolution
results in complete destruction of the pulse into small-
amplitude radiation waves.

5 Conclusion

In this work, we have introduced a model which includes
two nonlinear dynamical chains with linear and nonlin-
ear couplings between them, and opposite signs of the
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Fig. 27. The evolution of the unstable SHG soliton in the case
of C = 0.055, κ = 0.75 and δ = 1. The top left, middle, and
right panels correspond to the profiles at t = 4, t = 160, and
t = 400. The bottom panel, as before, shows the time evolution
of amplitudes at the central site.

discrete diffraction inside the chains. In the case of the
cubic nonlinearity, the model finds two distinct interpre-
tations in terms of nonlinear optical waveguide arrays,
based on the diffraction-management concept. A contin-
uum limit of the model is tantamount to a dual-core
nonlinear optical fiber with opposite signs of dispersion
in the two cores. Simultaneously, the system is equiva-
lent to a formal discretization of the standard model of
Bragg-grating solitons. A straightforward discrete second-
harmonic-generation [χ(2)] model, with opposite signs of
the diffractions at the fundamental and second harmon-
ics, was introduced too. Starting from the anti-continuum
(AC) limit and gradually increasing the coupling constant,
soliton solutions in the χ(3) model were found, both above
the phonon band and inside the gap. Above the gap, the
solitons may be stable as long as they exist, but with tran-
sition to the continuum limit they inevitably disappear.
On the contrary, solitons in the gap persist all the way up
to the continuum limit. In the zero-mismatch case, they
always become unstable before reaching the continuum
limit, but finite mismatch may strongly stabilize them. A
separate procedure had to be developed to search for dis-
crete counterparts of the well-known Bragg-grating gap
solitons. As a result, it was found that discrete solitons of
this type exist at all values of the coupling constant C, but
they appear to be stable solely in the limit cases C = 0 and
C = ∞. Solitons were also found in the χ(2) model. They
too start as stable solutions, but then lose their stability.

In the cases when the solitons were found to be un-
stable, simulations of their dynamical evolution reveal a
variety of different scenarios. These include establishment
of localized breathers featuring periodic, quasi-periodic,
or very complex intrinsic dynamics, or destruction of one
component of the soliton, as well as symmetry-breaking
effects, and even complete decay of both components into
small-amplitude radiation. The outcome depends on the
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type of the nonlinearity (cubic or quadratic), and on the
nature of the unstable solution.
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